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Abstract Deterministic chaos refers to irregular or chaotic motion that is generated by nonlinear systems. The
chaotic behavior is not to quantum-mechanical-like uncertainty. Chaos theory is used to prove that erratic and
chaotic fluctuations can indeed arise in completely deterministic models. Chaotic systems exhibit a sensitive
dependence on initial conditions. Seemingly insignificant changes in the initial conditions produce large differences
in outcomes.The basic aim of this paper is to construct a relatively simple chaotic growth model of the monopoly
price that is capable of generating stable equilibria, cycles, or chaos.A key hypothesis of this work is based on the
idea that the coefficient u =f (n — b — d ) plays a crucial role in explaining local stability of the monopoly profit,
where, b — the coefficient of the total cost function of the monopoly firm, n - the coefficient of the inverse demand

function, d - the Pigovian tax rate.
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1. Introduction

Chaos theory attempts to reveal structure in
unpredictable dynamic systems. It is important to
construct deterministic, nonlinear economic dynamic
models that elucidate irregular, unpredictable economic
behavior. Deterministic chaos refers to irregular or chaotic
motion that is generated by nonlinear systems evolving
according to dynamical laws that uniquely determine the
state of the system at all times from a knowledge of the
system'’s previous history. Chaos embodies three important
principles: (i) extreme sensitivity to initial conditions; (ii)

cause and effect are not proportional; and (iii) nonlinearity.

Chaos theory can explain effectively unpredictable
economic long time behavior arising in a deterministic
dynamical system because of sensitivity to initial
conditions. A deterministic dynamical system is perfectly
predictable given perfect knowledge of the initial
condition, and is in practice always predictable in the short
term. The key to long-term unpredictability is a property
known as sensitivity to (or sensitive dependence on) initial
conditions.

Chaos theory started with Lorenz's [12] discovery of
complex dynamics arising from three nonlinear
differential equations leading to turbulence in the weather
system. Li and Yorke [11] discovered that the simple
logistic curve can exibit very complex behavior. Further,
May [14] described chaos in population biology. Chaos
theory has been applied in economics by Benhabib and
Day [1,2], Day [3,4], Grandmont [6], Goodwin [5], Medio
[15,16], Lorenz [13], Jablanovic [7,8,9,10], among many
others.

The basic aim of this paper is to provide a relatively
simple chaotic the monopoly price growth model that is
capable of generating stable equilibria, cycles, or chaos.

2. A Simple Chaotic Price Growth Model
of a Profit-Maximizing Monopoly

In the model of a profit-maximizing monopoly, take the
inverse demand function
Pt: n—m Qt (1)

Where P- monopoly price; Q — monopoly output; n, m
— coefficients of the inverse demand function.
In this case, total revenue is given by

TR:PQ:th—l’l’th2 (2)

Further, suppose the quadratic total-cost function for a
monopoly is

TCi=a+bQ¢+c Q2 (3

TC — marginal cost; Q — monopoly output ; a, b, ¢ —
coefficients of the quadratic marginal-cost function.
It is supposed that the Pigovian tax is

Te=d Qt (4)

T - the Pigovian tax , Q — monopoly output ; d - the
Pigovian tax rate
In this sense , the total cost function for monopoly is

TCi=a+ (b+d)Q:+cQs2 (%)

TC -total cost; Q -monopoly output; a, b, ¢ —
coefficients of the quadratic total cost function, d - the
Pigovian tax rate Profit, I, is the difference between total
revenue and total cost. It is supposed that a=0. Then,
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Hi=h-b-d)Qi—(m+c) Qe (6)
Further , it is supposed that
Qe=1f1I t1 @)

where: Q —monopoly output, TT- monopoly profit.
By substitution one derives:

Hi=fn-b-d)MMe1—f2(m+c) M1z (8

Further, it is assumed that the monopoly profit is
restricted by its maximal value in its time series. This
premise requires a modification of the growth law. Now,
the monopoly profit growth rate depends on the current
size of the monopoly profit, IT, relative to its maximal size
in its time series IT™. We introduce = as = = IT/ I1 ™. Thus
n range between 0 and 1. Again we index « by t, i.e., write
n ¢ to refer to the size at time steps t = 0,1,2,3,... Now,
growth rate of the monopoly profit is measured as

ni=fh-b-d)onti—f2(m+c)me12 (9

This model given by equation (9) is called the logistic
model. For most choices of b, ¢, d, m, and n there is no
explicit solution for (9). Namely, knowing b, ¢, d, m, and
n and measuring m o would not suffice to predict 7, for any
point in time, as was previously possible. This is at the
heart of the presence of chaos in deterministic feedback
processes. Lorenz [12] discovered this effect - the lack of
predictability in deterministic  systems.  Sensitive
dependence on initial conditions is one of the central
ingredients of what is called deterministic chaos.

This kind of difference equation (9) can lead to very
interesting dynamic behavior, such as cycles that repeat
themselves every two or more periods, and even chaos, in
which there is no apparent regularity in the behavior of « ..
This difference equation (9) will possess a chaotic region.
Two properties of the chaotic solution are important:
firstly, given a starting point @ o the solution is highly
sensitive to variations of the parameters b, ¢, d, m, and n;
secondly, given the parameters b, ¢, d, m, and n the
solution is highly sensitive to variations of the initial point
7 o. In both cases the two solutions are for the first few
periods rather close to each other, but later on they behave
in a chaotic manner.

3. Logistic Equation

The logistic map is often cited as an example of how
complex, chaotic behavior can arise from very simple
non-linear dynamical equations. The logistic model was
originally introduced as a demographic model by Pierre
Frangis Verhulst. It is possible to show that iteration
process for the logistic equation

zemi=nz:(1—z0,pel0,4]l,z¢<l0,1] (10

is equivalent to the iteration of growth model (9) when
we use the following identification:

_ f(m+c)
Zt—= T—

(n—b-d)
Using (9) and (11) we obtain

ny andp=f(n—-b-d) (11)

f(m+c)
(n—b-d)

Z t+1 = I t+1 =

ZEﬁg%%%%[ﬂn—b—d)nt—fzhn+c)nﬁ]=
3 2
=2 (m+c)o:- % I ¢ 2

On the other hand, using (10), (11), and (12) we obtain
Zt+1=pZt(1—Zt)=

f(m+c) _ _f(m+c)

=fa-b-d (n—b—d) me[1 (n—b—d)Ht]
_ f3(m+c)?
—fz(m‘}‘C)Ht—m Ht2

Thus we have that iterating
ni=fla-b-d)me1—f2(m+c) me1?2
is really the same as iterating
Zt+1:}th(1—Zt)

using

, .= f(m+c)
" (n—-b-d)

see Figure 1.

It is important because the dynamic properties of the
logistic equation (10) have been widely analyzed [11,14].

It is obtained that

(i) For parameter values 0 < p < 1 all solutions will
convergetoz=0;

(if) For 1 < p < 3,57 there exist fixed points the number
of which depends on y;

(iii) For 1 < p < 2 all solutions monotnically increase to
z=(u-1)/w

(iv) For 2 < p < 3 fluctuations will converge to z = (u -
1)/

(v) For 3 < p < 4 all solutions will continously fluctuate;

(vi) For 3,57 < p < 4 the solution become "chaotic"
wihch means that there exist totally aperiodic solution or
periodic solutions with a very large, complicated period.
This means that the path of z; fluctuates in an apparently
random fashion over time, not settling down into any
regular pattern whatsoever.

=7

ncandpn=fn—-b-d)

The growth model (9)

¥

21—1:!11[(1-1[)

Figure 1. Two quadratic iteratiors running in phase are tightly coupled
by the transformations indicated



3 Journal of Business and Management Sciences

4. Conclusion

This paper suggests conclusion for the use of the simple
chaotic model of a profit -maximizing monopoly in
predicting the fluctuations of the monopoly price. The
model (9) has to rely on specified parameters parameters b,
¢, d, m, and n, and initial value of the monopoly profit, 7.
But even slight deviations from the values of parameters
parameters b, ¢, d, m, and n and initial value of the
monopoly profit, n., show the difficulty of predicting a
long-term behavior of the monopoly profit.

A key hypothesis of this work is based on the idea that
the coefficient p =f (n - b - d ) plays a crucial role in
explaining local stability of the monopoly profit , where, b
- the coefficient of the total cost function of the monopoly
firm, n - the coefficient of the inverse demand function, d
- the Pigovian tax rate.
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