
Journal of Business and Management Sciences, 2018, Vol. 6, No. 3, 70-75
Available online at http://pubs.sciepub.com/jbms/6/3/1
©Science and Education Publishing
DOI:10.12691/jbms-6-3-1

Reed-Solomon Based Bar Code Character
Substitution Rates

Kevin Berisso*

Department of Engineering Technology, University of Memphis, Memphis USA
*Corresponding author: kberisso@memphis.edu

Abstract The use of Reed-Solomon error correction (RSEC) in bar code symbologies has been around since the
early 1990s, but there hasn’t been an in depth, publicly accessible study done on their resistance to character
substitution errors since the original studies done in the early 1990s at Ohio University. This article reports on the
test results from the scanning of more 23 million scans resulting in more than 2.39 billion characters across four
different RSEC enabled bar code symbologies (Data Matrix, QR code, PDF417 and Aztec Code) with five different
scanners. The results show that the RSEC enabled symbologies are capable of achieving at least a 1 in 797 million
error rate, allowing for their use in instances where decoded data accuracy is imperative.

Keywords: 2D symbology, bar codes, data matrix, QR code, reed-solomon

Cite This Article: Kevin Berisso, “Reed-Solomon Based Bar Code Character Substitution Rates.” Journal of
Business and Management Sciences, vol. 6, no. 3 (2018): 70-75. doi: 10.12691/jbms-6-3-1.

1. Introduction

Within the automatic identification industry, the use of
bar code symbologies (the various types of bar codes or
‘languages’) that include Reed-Solomon error correction
(RSEC) is often taken as a given for applications that
require a higher degree of data confidence. The reasoning
is that the Reed-Solomon error correction methodology is
known to be a proven, robust solution that is used across
multiple industries. Data substitution errors are instances
where the bar code scanner processes a bar code symbol
and returns an incorrect answer that is of the correct length
and formatting, but with one or more incorrect characters
or digits (e.g. “1235” instead of “1234”). However, if the
reader were to specifically look for published evidence of
the applicability of Reed-Solomon based 2D symbologies
for industries with a zero tolerance of character substitutions
exist, there exists little or no published evidence. In fact,
the only known publicly available discussion of 2D
symbology data substitution rates is an unpublished Ohio
University report by Fales & Vincent [1] from 1993 in
which they scanned approximately 62 million characters
between the Data Matrix and PDF417 symbologies.
Considered a seminal work for its time, the current level
of 2D symbology usage today implies that this work is in
dire need of an update.

In 2013 the Federal Drug Administration (FDA)
released a final rule that required the unique identification
of medical devices through their distribution and use.
Known as the Unique Device Identification (UDI) rule,
this FDA mandate requires all devices not under
exemption to carry a label that contains both a human
readable component and in an automatic identification and
data capture (AIDC) form [2]. In the rule, the specification

of specific technologies was avoided. However, due to the
required data content and the nominal size of many of the
medical devices that would have to comply, smaller
high density bar code symbologies would have to be
incorporated. And because of the sensitivity to data
accuracy within the medical industry, the implicit use of a
symbology with error correction was functionally build
into the rule.

The FDA’s UDI rule is not the first government
mandate that implicitly or explicitly require 2D
symbologies. As early as 2003, the U.S. Department of
Defense required Item Unique Identification (IUID)
marking on all serially managed items via MIL-STD-130
(which started out as Department of Defense Policy
4140.01) where all items above a specified value or that
were otherwise specified received a unique identifier.
Within the standard, Data Matrix is specifically listed as
an acceptable method of marking required items.

The use of 2D symbols is also an accepted practice
within the consumer goods supply chain. GS1, a global
business standards organization that enables companies
“…to identify, capture and share information smoothly,
creating a common language that underpins systems and
processes all over the world.” [3], adopted the Data Matrix
symbology in 2006 as a way to allow members to mark
items for the healthcare industry. In fact, one only has to
look to their cans of soup, shampoo or medication to see the
adoption of Data Matrix as a tracking or validation tool.

And finally there is the airline industry. The use of
PDF417 and Aztec Code have been an integral part of the
airline industry since the early 2000’s as a way to encode
passenger data on both paper tickets and cell phone-based
e-tickets. Since the passenger’s name and flight
information is encoded, a single incorrect character has
the potential to disrupt or even prevent a traveler’s
passage through security and onto the plane.

71 Journal of Business and Management Sciences

What all of these groups have in common is the need to
have a symbology that is resistant to physical damage
(erasures, additional marks inside the symbol, etc.)
ensuring that the data is still available and still accurate.
2D symbologies such as Aztec Code, Data Matrix, Han
Xin, PDF417, and QR Code provide this level of
protection and data integrity insurance. However, as
previously mentioned, there currently exists a lack of
empirical evidence to this effect. While a seminal piece of
work for its time, the 1993 study by Ohio University has
two short-comings. This first is that the study is over 24
years old; there have been numerous significant improvements
in micro-computer processing and imaging since the tests
were conducted. The second issue is that there has been a
significant increase in the usage of the tested symbologies.
The 1993, results indicated that in at a worst case there
could be a one in 10.5 million probability of a character
substitution error and a best case of one in 613 million.
However, because of the data set size, 31 million
characters scanned over 622,080 instances, this result was
only a statistical probability based on the confidence
interval of the test.

The goal of this research was to determine if the one in
10.5 million character substitution probability was
realistic and to hopefully provide the AIDC industry with
a new benchmark on the robustness of Reed-Solomon
based symbols. This research is not looking at the
comparative performance of the scanners used nor the
symbologies but instead is concentrating on the ability of
correctly printed, non-damaged symbols to consistently
and reliably result in accurate data. The reasoning for this
limitation is that to compare scanners or symbologies
would actually be testing the various image processing
and decode methodologies used by the various scanner
manufacturers, not the error correction robustness;
something that is outside the scope of the papers intent.

2. 2D Bar Code Symbologies

To the lay person, all bar codes are often grouped
together. However, to the AIDC expert, there are often
profound differences that allow the various symbologies
to be used to solve specific problems. For example, the
use of QR Codes in an on-demand high speed printing
process would make as much sense as using a hammer to
drive screws would be to the carpenter. Additionally, not
all symbologies include error correction, making their use
a poor choice when encoding data in environments that
are prone to label damage or are in need of a high level of
data accuracy confidence. For example, in his 1991 report,
Dr. Fales reported a worst case character substitution rate
for the UPC-A symbology of 1 in 394,003 characters at a
95% confidence interval. While Code 128 did better, 1 in
2,764,151 characters at a 95% confidence interval, the test
showed that character substitutions could and did occur
[4].

2.1. Terminology
Within the AIDC industry, there are some common

terms that are used that the lay person may not know or
may incorrectly use.

1) 2D symbology – A symbology that encodes data in
two dimensions. Both stacked and matrix symbologies are
often categorized together as 2D symbologies.

2) Codeword – “symbol character value, an
intermediate level of coding between source data and the
graphical encodation in the symbol” [5]

3) Error correction codeword (ECC) – Codewords that
are specifically used for error correction instead of data
encoding.

4) Linear symbology – A symbology that encodes data
in one direction only.

5) Matrix symbology – A symbology that encodes data
in a matrix of modules that are either on or off.

6) Module – A single cell or element within a grid that
represents a single data bit for a matrix symbology.

7) Stacked symbology – A symbology that encodes data
in multiple rows that often look like linear symbologies
stacked upon each other.

8) Substitution error – An instance where one or more
decoded characters differ from the encoded character(s).

9) Symbol – A specific instance of a bar code that has
been encoded with data following a bar code symbology.
An analogy would be a word written in a specific
language.

10) Symbology – A standard way of encoding data in
machine readable form. An analogy would be a language
(e.g. French, Spanish, Korean).

Table 1. Some common 2D symbologies in use

Symbology Example Comments

Aztec Code

Currently used in the airline industry.

Data Matrix

Most commonly seen 2D symbology
when manufacturing is included.

Dot Code

While an open standard, only the
tobacco industry has seen any level of

adoption.

Han Xin

China is the primary user at the
moment.

Maxicode

Maxicode is only used by UPS.

PDF417
PDF417 is a stacked symbology,

where the rows in the symbol contain
varying information.

QR Code

Commonly seen in mobile
applications, arguably the most
recognizable 2D symbology.

Ultracode

While an open standard, Ultracode
has not seen large scale adoption to

date.

11) X Dimension – The module size for matrix

symbologies and the smallest bar or space width for linear
and stacked symbologies. An analogy would be the font
size used for the symbol.

2.2. Types of Symbologies
In general there are three primary types of bar codes

in use; linear, stacked and matrix. In traditional linear

 Journal of Business and Management Sciences 72

symbologies (e.g. EAN/UPC), the height is referred to as
vertical redundancy. No additional information is stored in
the vertical height of the symbol. Instead, the vertical
height exists to make the scanning process easier. Stacked
symbologies use stacked rows of linear type bars to
encode data and matrix symbologies use the presence or
absence of modules within a grid to encode the binary data.
For the purposes of this paper, stacked and matrix
symbologies have been grouped together under the
heading 2D symbologies.

While there are numerous stacked and matrix based bar
code symbologies in existence (see Table 1), this paper is
concentrating on what are arguably four of the five most
commonly seen symbologies; Aztec Code, Data Matrix,
PDF417 and QR Code. Han Xin is a newer symbology out
of China that is seeing an expanding role in some areas of
the supply chain. However, due to its newness, not all
scanners support it, limiting its use.

What the four selected symbologies have in common is
wide-spread adoption and the inclusion of error correction.
These symbologies take the data that is to be encoded and
convert the information into a series of codewords. These
codewords are then mapped to the required patterns for
printing.

The bar code symbol also will include some method of
indicating an origin or start and stop location (e.g. QR
Codes use the three distinct finder patterns, in the shape of
squares with bounding boxes as seen in Figure 1). This
finder pattern helps the decoder to determine the extents
of the symbol and makes it easier for the imaging
processor to know what is and is not part of the bar code.

Figure 1. Finder patterns (black areas) for Aztec Code (left), Data
Matrix (middle-left) and QR Code (right). PDF417 (middle-right) uses
start (left side) and stop (right side) patterns

Of the four symbologies discussed, only Data Matrix
has a fixed level of error correction. The others have some
level of user selectability when it comes to the amount of
error correction that is applied to a given symbol.
Additionally, Data Matrix is the most efficient of the
symbologies. Given the same data and the same X
Dimension, Aztec Code requires 1.7 times more space,
QR Code requires 3.2 times more space and PDF417
requires 29.2 times more space when encoded at their
minimal error correction levels.

2.3. Reed-Solomon Error Correction
RSEC is a methodology for auto-correcting erroneously

decoded messages. Originally developed for the
telecommunications industry, RSEC that has been widely
adopted as an error correction solution across multiple
industries. With a solid history of use within the
communications disciplines, RSEC was adopted by the
AIDC industry when 2D symbologies were developed as a
method for addressing the potential of having missing
modules (erasures) or instances where codewords were
incorrectly decoded (errors) [6,7,8].

While a full discussion of the mechanics of the RSEC
methodology is beyond the scope of this article, the
general process is to pass the data to be encoded though a
series of steps that convert the source data into a series of
integer based code words that is constrained to a
mathematical field of a predetermined prime size (the
Galois Field). These codewords are then combined with
the appropriate Galois Field based RSEC polynomial for
the desired number of error correction code words. The
resulting error correction code words are embedded within
the message and everything is sent to the receiving device;
which in the case of bar codes is the logic that converts the
code words into a series of on or off modules within the
symbol [9].

When a bar code symbol is read, the decoder will
reverse the process since the RSEC polynomial is known
and the number of codewords will be either explicitly or
implicitly defined. If a remainder exists after dividing the
code word(s) into the generating polynomial then errors
have been detected and the corrected code words can be
calculated, allowing for the recovery of the original
message.

The four symbologies selected for this study use a
variety of Galois Field values and differing prime modulus
numbers. The exact GF values and prime modulus
numbers are listed in the symbology’s respective AIM or
ISO/IEC standards and are based on the idiosyncrasies of
the individual symbology.

3. Methodology

The physical testing setup for this paper was relatively
simple. Bar code scanners were attached to a simple
gantry frame that allowed each scanner to be individually
positioned as shown in Figure 2. The individual symbols
used were printed on a standard laser printer from the
Bartender Designer 2016 R3 software from Seagull
Scientific and the symbols were attached to simple medal
plates with magnets. The plates were attached to a
reciprocating table that was driven by a variable speed
motor. The table was set to reciprocate at a rate of 2 Hz.
The table was located such that at the end of each stroke,
the symbols were moved within the scan field of the bar
code scanners.

Figure 2. Physical testing setup

The symbols that were used contained various random
data that was in five different formats (boarding passes,
GS1 data formats, FDA UDI encoded using GS1 data
constructs, random numbers, alphanumeric data). All
symbols were printed in their correct format without any

73 Journal of Business and Management Sciences

manufactured defects (e.g. erasures, additions, skewing).
It was decided a priori that for this specific test a stressing
of the individual decode algorithms that had been
implemented by the various scanner manufacturers would
not be conducted. Instead, this test was intended to
determine if random character substitutions would
occur as was found with most of the traditional linear
symbologies (e.g. Code 39, EAN/UPC) in the studies done
by the Center for Automatic Identification at Ohio
University in the early 1990’s [2].

The bar code scanners were connected via RS-232 serial
interfaces that fed directly into the computer (instead of
using USB to RS-232 adapters) so as to remove any
potential transmission errors due to the USB interface or
the existence of multiple USB to Serial adapters on the
same computer. The specific bar code scanners used were
all hand-held scanners that were placed in “presentation
mode” which allows the scanner to continuously decode
symbols that are within the scanner’s field of view without
the need for a physical trigger pull. The selection of
scanners was random in that specific scanners with a
priori capabilities were not identified. Instead, scanners
that were readily available in the lab, or that could be
obtained via donations were used. All scanners had only
the four symbologies being tested enabled and were
configured to transmit the AIM Symbology Identifier (a “]”
plus two additional characters) as a prefix and a carriage
return and or line feed as a terminator.

Custom software written in C# using Microsoft’s
Visual Studio was developed to capture the serial port data
and insert it into a SQL Server database that was
maintained on a separate computer. The software captured
the scanned data and recorded the scanner station. It
should be noted that the data reported in this report is
actually from a second data collection run. In the first data
collection run, an unacceptable number of transmission
error occurred due to the method in which the custom
software processed data. It was discovered that when
searching through the serial buffer data for the termination
characters, casting the hexadecimal ASCII values to
characters instead of using the escape sequence (e.g.
"(char)0x000A” instead of “\r”) significantly improved
processing time and reduced the number of transmission
based errors within the software.

4. Discussion
Over the course of the research, a total of 23,869,258

scans were collected for a total of 2,391,925,961 characters.
55 unique symbols were processed. The results of the
scans were grouped by encoded data and scanner and
three types of data were searched for; correct data
(99.9967%), incorrect data due to transmission errors
(0.0033%) and incorrect data due to character substation
errors (0.0000%).

4.1. Correct Data
Correct data was identified within the database as data

strings that matched the encoded data in the various
symbols. In some instances the custom software left a null
character at the end of an otherwise valid string. For these

instances, the null character was stripped away and the
resulting data string was added to the count for those
instances where the null character was already stripped.

Table 2. Breakdown Of Symbologies Scanned

Symbology Total Scans Characters Scanned

Aztec Code 4,216,918 606,895,007

Data Matrix 7,084,222 603,184,399

PDF417 6,265,983 551,891,004

QR Code 6,302,135 629,955,551

Table 2 shows the breakdown of the symbologies

scanned and the relevant overall number of symbol scans
and characters scanned. The quantities listed are of the
scans that were indicated as good. Scans that were
ultimately categorized as having transmission errors were
left out of the totals since the character counts would have
skewed the results.

4.2. Transmission Errors
Despite the efforts taken to eliminate transmission

errors between the scanners and the software, some still
occurred. The errors that did occur can be grouped into
three types; dropped characters, truncated data, and
corrupted data. For the purpose of this paper, dropped
characters are instances where no more than three
characters were missing from the data stream. Truncated
data is being defined as more than three characters were
missing from the data stream but where there was no other
issues with the data stream. Corrupted data is defined as
instances where non-printable ASCII character appeared
in the data stream or where additional unexpected data

By far, the most frequent occurrence of transmission
error was the dropping of one or more characters, 514
occurrences. The majority of the time the dropped character
was the carriage return and/or line feed that indicated the
end of transmission of a data set. The reason for this is
unknown, but at a rate of 21.5 per million transmissions it
is assumed that the problem was either in the custom
software or due to minor glitches in the serial buffers on
the computer. However, this type of error would occur
infrequently enough that it shouldn’t be of major concern
to users as properly written programs will provide a level
of data validation prior to the consumption of the data.

There were 60 instances where the data transmission
appeared to be significantly truncated. Once again, the
cause is unknown but it was assumed that the causes were
either in the custom software or due to minor glitches in
the serial buffers on the computer.

The third type of transmission error exhibited itself as
corrupted data. Two types of corrupted data were
observed during the testing; truncated and expanded. In
terms of unique data streams, there were a significantly
higher number of truncated transmission errors. However,
most of these occurred only once or twice.

The corrupted data that resulted in truncated data
primarily manifested itself as non-printable ASCII
characters. While the exact cause is unknown, it is
believed that there was some sort of interruption in the bit
stream that caused some sort of bit shift. There were,

 Journal of Business and Management Sciences 74

however, 116 instances where printable ASCII characters
were introduced into the data stream (e.g. “?”, “@”).

Conversely, there were relatively few unique instances
of expanded data streams, but when they did occur, there
were thousands of instances. In terms of the number of
times it occurred, the most prominent problem (over 66
thousand occurrences) was the addition of one or more
instances of the string “]C0?” with an additional number
after the question mark (0, 6 or 8). It is unknown why this
occurred. The string “]C0” indicates that the symbology
scanned is Code 128. However, this is occurred on a
single scanner despite Code 128 being turned off in the
scanner’s configuration. There were also six instances
where a question mark was inserted into the data stream as
the first character instead of the “]” that was supposed to
be there. However, despite the additional character(s)
added to the data stream in all of these cases, the encoded
data was not impacted. The manufacturer of the scanner
was contacted and it was determined that there was a bug
in the scanner’s firmware that resulted in the unintentional
additional characters. This was proved when an updated
firmware version was loaded into the scanner and the
problems went away.

The other unexplained occurrence was where a single
scanner (which was different from the one previously
discussed) inexplicitly substituted a random sequence of
numbers into the middle of a string of 87 zeros a total of
83 times. The result was that instead of transmitting

“]Q1100
000
006”

the scanner would transmit
“]Q110000000000000000000006389452254400000000
000
00”

to the data collection software. The symbol in question
was a QR Code with the error correction level set to Q or
H. When the same scanner processed the same data but
encoded at an error correction level of M or L, the
problem did not manifest. After discussions with the
manufacturer, it was determined that the cause was a bug
in the firmware, not in the symbology because a) no other
scanner exhibited the behavior – including a different
model scanner from the same manufacturer, b) that the
final character in the incorrect string was not correct and
c) that despite numerous attempts, the researcher was not
able to mathematically show how the change in data
would have been possible within the confines of the
Reed-Solomon error correction process. Furthermore, it
should be noted that when other over-corrected
symbologies were tested on the scanner in question, no
instances of invalid data were observed, adding to the
belief that the problem was isolated to the specific version
of firmware.

4.3. Substitution Errors
Of the 2,391,925,961 characters scanned over 55

symbols, there were zero identified instances where a
character substitution occurred after 23,869,258 scans.
There were 83 instances where one scanner produced data
that appeared similar to a character substitution error.
However, as previously discussed, these occurrences were

ultimately classified as firmware specific error and were
not attributable to the symbologies or error correction.

4.4. Statistical Conclusion
Based on van Belle, “given no observed events in n

trials, a 95% upper bound on the rate of occurrence is 3/n”
[10]. Thus, for the generated data, it can be said with a
95% confidence that RSEC will provide protection to at
least a 1 in 797 million character substitution rate based on
the data collected.

5. Conclusions

The results from this study show that at a 95%
confidence level, bar code symbologies that employ RSEC
have at character substitution resistance that results in an
occurrence rate that is at least 1 in 797 million. Instances
of character substitution found outside the lab, in symbols
that are in good condition without physical damage, will
most likely be due to either transmission errors or bugs in
the firmware of the bar code scanner producing the data.
And even then, the likelihood that a user will see data
similar to what was used to provoke the errors found
during this test are highly unlikely – how often would a
real-world business case require the encoding of 87
consecutive zeros.

During the course of the research it became apparent
that solution providers will need to ensure that they are
accessing data in a manner that best suits the individual
application. A careful implementation of any serial port
based data collection will reduce the number of
transmission errors and the proper validation of incoming
data will further ensure that invalid data doesn’t make its
way into the system.

This study shows that RSEC based symbologies are
sufficiently immune to character substitutions errors such
that the adoption of these symbologies can be comfortably
accomplished during the compliance process to such
initiatives as the FDA UDI or the Department of Defense
IUID programs. However, there is still room for additional
improvements to the body of knowledge about RSEC
based symbologies. Testing of the error correction
capabilities due to erasures or symbol errors should be
done to help determine the true level of robustness of
these symbologies. Additionally, testing of the various bar
code scanner interfaces should be done to help determine
if an avoidance of specific interfaces should occur if the
reduction in the number of transmission errors is desired.

Acknowledgements

This paper would not have been possible without the
support and advice of the GS1 Barcode and Identification
Technical Group and the AIM Technical Symbology
Committee. Additional thanks are owed to Cognex,
Datalogic, Honeywell Scanning and Mobile Productivity,
and Zebra for their outstanding technical support in
configuring and optimizing the settings for their respective
devices. For further information about this study please
visit www.memphis.edu/autoid/research.

75 Journal of Business and Management Sciences

References
[1] J. F. Fales and R. S. Vincent, “Datamatrix and PDF417 Data

Integrity Test,” unpublished report to Oak Ridge National
Laboratory dated Oct. 1993.

[2] FDA Final Rule – Federal Register Vol 78, No 185, Sept 24, 2013
Available:
https://www.gpo.gov/fdsys/pkg/FR-2013-09-24/pdf/2013-
23059.pdf.

[3] GS1.org, ‘Home Page’, 2017. [Online]. Available:
https://www.gs1.org/. [Accessed 19- May- 2017].

[4] J. F. Fales, “Code 16K and Code 49 Data Integrity Test,”
unpublished report to AIM USA dated Dec, 1991.

[5] Information technology — Automatic identification and data
capture techniques — Data Matrix bar code symbology
specification, ISO/IEC 16022, 2006-09-15.

[6] Li, L., Qiu, J., Lu, J. and Chang, C. “An aesthetic QR code
solution based on error correction mechanism”, Journal of Systems
and Software, 116, ppg. 85-94, 2016.

[7] Wicker, S. B. and Bhargava, V. K. Reed-Solomon Codes and
Their Applications. Wiley-IEEE Press. 1999.

[8] Kato, H. and Tan, K. T. “Pervasive 2D Barcodes for Camera
Phone Applications”, IEEE Pervasive Computing, 6 (4), pp. 76-85,
Oct 2007.

[9] Plank, J. S. “A Tutorial on Reed–Solomon Coding for Fault-
Tolerance in RAID-like Systems”, Software—Practice And
Experience, 27(9), ppgs. 995–1012, SEPTEMBER 1997.

[10] G. van Belle, "The Rule of Threes for 95% Upper Bounds.” in
Statistical Rules of Thumb, 2nd ed. Hoboken, N.J., U.S.A: Wiley,
2008, ch. 2, pp. 49-50.

